Molecular characterization and expression studies during melon fruit development and ripening of L-galactono-1,4-lactone dehydrogenase.

نویسندگان

  • Irene Pateraki
  • Maite Sanmartin
  • Mary S Kalamaki
  • Dimitrios Gerasopoulos
  • Angelos K Kanellis
چکیده

The last step of ascorbic acid (AA) biosynthesis is catalysed by the enzyme L-galactono-1,4-lactone dehydrogenase (GalLDH, EC 1.3.2.3), located on the inner mitochondrial membrane. The enzyme converts L-galactono-1,4-lactone to ascorbic acid (AA). In this work, the cloning and characterization of a GalLDH full-length cDNA from melon (Cucumis melo L.) are described. Melon genomic DNA Southern analysis indicated that CmGalLDH was encoded by a single gene. CmGalLDH mRNA accumulation was detected in all tissues studied, but differentially expressed during fruit development and seed germination. It is hypothesized that induction of CmGalLDH gene expression in ripening melon fruit contributes to parallel increases in the AA content and so playing a role in the oxidative ripening process. Higher CmGalLDH message abundance in light-grown seedlings compared with those raised in the dark suggests that CmGalLDH expression is regulated by light. Finally, various stresses and growth regulators resulted in no significant change in steady state levels of CmGalLDH mRNA in 20-d-old melon seedlings. To the authors' knowledge, this is the first report of GalLDH transcript induction in seed germination and differential gene expression during fruit ripening.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the galactono-1,4-lactone dehydrogenase from pepper fruits and its modulation in the ascorbate biosynthesis. Role of nitric oxide☆

Pepper fruit is one of the highest vitamin C sources of plant origin for our diet. In plants, ascorbic acid is mainly synthesized through the L-galactose pathway, being the L-galactono-1,4-lactone dehydrogenase (GalLDH) the last step. Using pepper fruits, the full GalLDH gene was cloned and the protein molecular characterization accomplished. GalLDH protein sequence (586 residues) showed a 37 a...

متن کامل

L-ascorbic acid biosynthesis in higher plants from L-gulono-1, 4-lactone and L-galactono-1, 4-lactone.

Detached bean (Phaseolus vulgaris) and strawberry (Fragaria) fruits fed l-gulono-1,4-lactone or l-galactono-1,4-lactone convert this compound, in part, to l-ascorbic acid. When l-galactono-1,4-lactone is given as a 0.25% solution to detached bean shoots, the ascorbic acid content is tripled in less than 10 hours. l-Gulono-1,4-lactone is only 5 to 10% as effective as its epimer. Experiments with...

متن کامل

Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development

To elucidate metabolism of ascorbic acid (AsA) in sweet cherry fruit (Prunus avium 'Hongdeng'), we quantified AsA concentration, cloned sequences involved in AsA metabolism and investigated their mRNA expression levels, and determined the activity levels of selected enzymes during fruit development and maturation. We found that AsA concentration was highest at the petal-fall period (0 days afte...

متن کامل

Regulation of L-ascorbic acid content in strawberry fruits

Plants have several L-ascorbic acid (AsA) biosynthetic pathways, but the contribution of each one to the synthesis of AsA varyies between different species, organs, and developmental stages. Strawberry (Fragaria×ananassa) fruits are rich in AsA. The pathway that uses D-galacturonate as the initial substrate is functional in ripe fruits, but the contribution of other pathways to AsA biosynthesis...

متن کامل

Silencing of the mitochondrial ascorbate synthesizing enzyme L-galactono-1,4-lactone dehydrogenase affects plant and fruit development in tomato.

L-Galactono-1,4-lactone dehydrogenase (EC 1.3.2.3) catalyzes the last step in the main pathway of vitamin C (L-ascorbic acid) biosynthesis in higher plants. In this study, we first characterized the spatial and temporal expression of SlGalLDH in several organs of tomato (Solanum lycopersicum) plants in parallel with the ascorbate content. P(35S):Slgalldh(RNAi) silenced transgenic tomato lines w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 55 403  شماره 

صفحات  -

تاریخ انتشار 2004